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The ability to integrate visual information over space is a funda-
mental component of human pattern vision. Regardless of whether
it is for detecting luminance contrast or for recognizing objects in a
cluttered scene, the position of the target in the visual field governs
the size of a window within which visual information is integrated.
Here we analyze the relationship between the topographic distri-
bution of ganglion cell density and the nonuniform spatial in-
tegration across the visual field. The extent of spatial integration for
luminance detection (Ricco’s area) and object recognition (crowding
zone) are measured at various target locations. The number of ret-
inal ganglion cells (RGCs) underlying Ricco’s area or crowding zone is
estimated by computing the product of Ricco’s area (or crowding
zone) and RGC density for a given target location. We find a quan-
titative agreement between the behavioral data and the RGC den-
sity: The variation in the sampling density of RGCs across the human
retina is closely matched to the variation in the extent of spatial
integration required for either luminance detection or object recog-
nition. Our empirical data combined with the simulation results of
computational models suggest that a fixed number of RGCs sub-
serves spatial integration of visual input, independent of the
visual-field location.

retinal ganglion cell density | spatial integration | Ricco’s area |
crowding zone | Bouma’s law

The integration of visual information over space is a critical
step in human pattern recognition. While the exact mecha-

nism underlying the integration process remains elusive, the key
property of the integration process—the extent over which spa-
tial integration occurs—has been well characterized. For in-
stance, the extent of spatial integration in luminance detection
has been well described by Ricco’s area (1). Ricco’s area repre-
sents the extent of “complete spatial summation” under which the
reciprocal relationship between detection threshold and stimulus
area remains constant (i.e., Ricco’s law) (1). On the other hand,
for object recognition, the extent of spatial integration is often
described by critical spacing (i.e., the minimum distance between
target and nearby items that yields reliable target recognition).
Due to a perceptual phenomenon called “crowding,” objects that
are easily identifiable on their own become unrecognizable when
presented close together (2, 3). Interestingly, the extent of spatial
integration, either Ricco’s area or crowding zone, depends on the
position of the target in the visual field, such as eccentricity or
quadrant. Ricco’s area (4, 5) and crowding zone both grow with
eccentricity (3, 6, 7) and exhibit visual-field asymmetry (8–11): On
average, there is a noticeably larger integration zone in the upper
visual field compared with the others. As feature segmentation
and integration are core processes of human pattern recognition,
it is undoubtedly important to understand what determines the
extent of spatial integration. Differing accounts have been of-
fered to explain different types of spatial integration zones (e.g.,
Ricco’s area vs. crowding zone) and different characteristics of
visual-field dependency (e.g., eccentricity vs. quadrant). For ex-
ample, Ricco’s area has been predominantly explained by rela-
tively low-level mechanisms such as spatial pooling of retinal
ganglion cells (RGCs) (4, 12) and/or V1 cortical neurons (13). On
the other hand, crowding zone has been explained by relatively

higher-level mechanisms, including cortical (14–17), attentional
(11, 18), and perceptual (19) constraints. While we acknowledge
significant contributions made by these aforementioned accounts,
we set out to examine the role of RGCs in spatial integration as
the front-end sensory mechanism.
The RGCs are the output neurons of the retina and the first

stage where visual sensory information is encoded as spikes (20).
Furthermore, as illustrated in Fig. 1, to a large extent (although
not completely) the topographic distribution of the RGC mosaic
accounts for cortical representation of the visual field, the known
cortical magnification (21–24) (premise 1). On the other hand,
the variation of the spatial extent of crowding across the visual
field has been attributed to the cortical magnification factor in
V1 (i.e., a fixed cortical distance of 6 mm) (14, 25) (premise 2).
Putting these two premises together allows us to infer that the
sampling density of RGCs, which underpins said magnification,
may set a limit on the extent of spatial integration. Thus, here we
investigate whether some of the properties of spatial integration
may be inherited from the sampling array of RGCs. We test this
idea with a working hypothesis that if the variation in the extent
of spatial integration across the visual field would represent the
variation in the RGC density across the human retina, we are
likely to see a fixed number of RGCs being involved in the
process of visual detection or recognition (Fig. 1). Using a
quantitative approach, we examine to what extent (if any) the
RGC density would account for the variation in the extent of
spatial integration of both human luminance detection and ob-
ject recognition. Note that throughout the paper the phrases “is
accounted for by,” “is explained by,” or “contribute to” are used
in a purely statistical sense by which the variance of one variable
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is explained by another variable while other factors are held
constant; this does not necessarily suggest any causal relationship
between the two variables as the current study is correlational
by nature.
To address this question, we measured the extent of spatial

integration for luminance detection (Ricco’s area) and object
recognition (crowding zone) in young, normally sighted individuals
[mean age ± standard deviation (SD) = 22.62 ± 3.81 y; mean
visual acuity = −0.09 ± 0.09 logMAR; mean log contrast sensi-
tivity = 1.82 ± 0.15 for the tested eye]. The sample size (n) for
each experimental condition is provided in SI Appendix, Table
S1. To obtain the RGC density of the human retina, we used
Drasdo et al.’s equation (26) based on previous histological
studies (27, 28) of the adult human retina [note that we also
replicated our results using Watson’s equation (29); see SI Ap-
pendix, Figs. S1 and S2]. In the current study, the RGC density
refers to the RGC density of a mix of different ganglion cell types
(e.g., midget and parasol cells) unless otherwise stated. Ricco’s
area was defined as the extent of stimulus area within which the
product of stimulus area and contrast detection threshold re-
mains constant. A subject’s contrast detection threshold was
measured with luminance discs of varying sizes (Fig. 2A) and
Ricco’s area was estimated from the two-limbed fit to the data of
log detection threshold vs. log stimulus area (Fig. 2B). Crowding
zone represents the spatial extent of the feature integration zone
that allows for reliable object recognition in the presence of
nearby distractors (3, 6). A subject’s contrast recognition threshold
was measured using a flanked letter with varying spacings between
the target and flankers (Fig. 2C). Critical spacing was estimated
from the clipped-lines fit to the data of log recognition threshold vs.
spacing between target and flankers (6) (Fig. 2D). For each subject,
both Ricco’s area and critical spacing were measured at seven dif-
ferent visual-field locations: four eccentricities (4°, 8.5°, 13.5° and
18.5° on the horizontal meridian) in the nasal visual field and three
additional locations at the eccentricity of 8.5°. Each location can be
denoted as (ρ, θ) in the polar coordinates: (4°, 180°), (8.5°, 180°),
(13.5°, 180°), (18.5°, 180°), (8.5°, 0°), (8.5°, 90°), and (8.5°, 270°) if
the subject’s test eye is the right eye. The data in the current study

are all expressed in visual field coordinates (i.e., Uvf, Lvf, Nvf,
and Tvf for the upper, lower, nasal, and temporal visual fields,
respectively) rather than retinal coordinates. See the details
of stimuli and task procedures in SI Appendix, Supplemental
Methods.
To see if the sampling density of RGCs mirrors the visual-field

dependence of the extent of spatial integration, we estimated the
number of RGCs underlying Ricco’s area and the area corre-
sponding to critical spacing (we hereafter refer to this area as
crowding zone to distinguish it from critical spacing) (Fig. 2 E, ii)
for each target location. This was achieved by computing the
product of Ricco’s area (degrees2) (or crowding zone) and the
RGC density (degrees−2) at each target location (Fig. 2 E, iii).
To be more precise, we calculated the integral of products of
ΔRicco’s area or Δcrowding zone and the corresponding RGC
density over the entire integration zone. This was done to take
into account that the RGC density varies continuously over the
extent of spatial integration. A resulting plot of the number of
RGCs as a function of target location (Fig. 2 E, iv) was used to
test our hypothesis. Consider how the shape of the resulting plot
of the product may differ depending on the contribution of the
underlying RGC density. (i) “Zero contribution” is a case in
which the RGC density plays no role in the extent of spatial
integration. Here we assume the hypothetical RGC density is a
constant function (D = c) across target locations, as illustrated in
Fig. 2 E, iii (orange dashed line). In this case, the shape of the
resulting curve would look more like the plot of the psycho-
physically defined integration zone, as illustrated by the orange
dotted line in Fig. 2 E, iv. (ii) “Partial contribution” is a case in
which the RGC density may explain the variance to some degree.
The effect would result in the relative flattening of the slope of
the resulting curve depicted by the green dotted line in Fig. 2 E,
iv. (iii) “Full contribution” is a case in which the RGC density
fully accounts for the variation in the extent of spatial in-
tegration, indicating that a fixed number of RGCs is employed to
represent sensory inputs for reliable visual detection or recog-
nition, independent of the target location. In this case, the
number of RGCs would remain constant across the visual field.
Thus, this hypothetical curve can be derived from fitting the
linear function whose slope is zero to the resulting data of the
number of RGCs vs. target location shown by the black dotted
line in Fig. 2 E, iv. Finally, we quantified the contribution of the
RGC density by computing the amount of the variance that can
be explained by the underlying RGC density with respect to the
total variance (SI Appendix, Supplemental Methods): A value of
0% means zero contribution whereas a value of 100% indicates
full contribution.

Results
Relating the Variation in the RGC Density to the Variation in Ricco’s
Area. Consistent with previous findings (4, 5), Ricco’s area (i.e.,
the spatial summation area required for luminance detection)
increases with increasing eccentricity (Fig. 3D) [F(3,38) = 57.62,
P < 0.001] and is noticeably larger in the upper visual field
compared with the other visual fields (Fig. 3A) [t(16) = 7.05, P <
0.001]. The plot of the RGC density as a function of target lo-
cation appears to be the mirror reversal of behavioral data (Fig.
3 B and E). The number of RGCs (i.e., the product of Ricco’s
area and the underlying RGC density) is plotted as a function of
visual-field quadrant (Fig. 3C) and eccentricity (Fig. 3F), re-
spectively. As mentioned earlier, there are three hypothetical
outcomes describing the relationship between Ricco’s area and
the RGC density: full, partial, and zero contributions. In Fig. 3C
and Fig. 3F, it becomes apparent that the number of RGCs
underlying Ricco’s area remains more or less constant across
target locations. Our analysis further reveals that the RGC
density explains nearly 95% of the variance in Ricco’s area across
different quadrants (Fig. 3C) and 89% of the variance across the
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Fig. 1. Schematic diagram of linking the RGC density to psychophysically
defined areas of spatial integration. The extent of spatial integration for
visual recognition increases with retinal eccentricity. Like acuity thresholds
(52), this eccentricity-dependent increase in the extent of spatial integration
has been explained by cortical magnification (i.e., millimeter of cortex per
degree of visual field decreases as a function of eccentricity) (14, 33). How-
ever, the topographic distribution of the RGC density to a large extent may
govern cortical representation of the visual field as cortical projections of
RGCs become uniformly distributed throughout the early visual cortical area
V1 (99). Here we relate the variation in the RGC density directly to the
variation in the extent of spatial integration across the visual field.
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eccentricities (Fig. 3F), ranging from 4° to 18.5°. Altogether,
nearly 90% of the variance in Ricco’s area across the visual field
is explained by the underlying RGC density (Fig. 3G). It is ap-
parent that the data point at 4° eccentricity deviates from the rest
of the data. Although speculative, this departure at 4° eccen-
tricity might be the result of overestimation of the RGC density
at lower eccentricities. In fact, Liu et al. (30) reported that peak
RGC densities at lower retinal eccentricities measured by their
adaptive optics optical coherence tomography (AO-OCT) are
significantly lower than previous histologic estimates (27) (P =
0.01), consistent with our conjecture. In addition to the contri-
bution of the overall RGC density, we also estimated the number
of midget retinal ganglion cells (mRGCs) underlying Ricco’s
area (Fig. 3H). We find that a fewer number of mRGCs is in-
volved in Ricco’s area and its statistical accountability is not as
good as using the overall RGCs (90% vs. 79%). This result is
well-aligned with the view that parasol ganglion cells projected to

the magnocellular pathway are more responsible for detecting
changes in luminance (31).
Taken together, our analysis allowed us to infer that in-

dependent of the visual-field location, ∼14 RGCs are involved in
the process of the complete summation underlying human lu-
minance detection (Fig. 3G). We, then, attempted to validate
this result using a computational model based on a small set of
the known optical, retinal, and V1 properties of the human/
primate visual system (32). We chose this model because this
simple retina-V1 detection model has been shown to provide an
excellent account for human detection performance against
various backgrounds (32). For the detailed information about
the model see Bradley et al. (32). Briefly, the retina-V1 detection
model consists of (i) the optical point spread function of the
human eye, (ii) local luminance gain control, (iii) the sampling
array of human RGCs (26) and their receptive field (RF) response
function (i.e., on-and off-center responses), (iv) V1 masking (i.e.,
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Fig. 2. Schematic diagram summarizing task stimuli, analysis methods, and three hypothetical outcomes. (A) Measuring Ricco’s area. The stimulus was an
achromatic luminance disk displayed on a uniform gray background. A subject’s contrast detection threshold was measured with a staircase procedure,
yielding 79.4% correct criterion (100). Thresholds were obtained for six different disk sizes. Ricco’s area was measured at seven different visual field locations:
four eccentricities (4°, 8.5°, 13.5°, and 18.5° on the horizontal meridian) in the nasal visual field and three additional locations at the eccentricity of 8.5°. Each
location can be denoted as (ρ, θ) in the polar coordinates: (4°, 180°), (8.5°, 180°), (13.5°, 180°), (18.5°, 180°), (8.5°, 0°), (8.5°, 90°), and (8.5°, 270°) if the subject’s
test eye is the right eye. Note that the data in the current study are all expressed in visual-field coordinates (i.e., Uvf, Lvf, Nvf, and Tvf) rather than retinal
coordinates. Therefore, the data from the nasal visual field contain the subject’s left or right visual-field data depending on the subject’s tested eye. The same
applies to the data from the temporal visual field. (B) Estimating Ricco’s area. The spatial summation curve, a plot of log contrast detection thresholds as a
function of log stimulus area (degrees2), was fitted with two lines. To estimate Ricco’s area, the slope of the first line was constrained to a value of −1 in
accordance with Ricco’s law, whereas the slope of the second line was allowed to vary. Ricco’s area was defined as the breakpoint of the two-limbed function.
(C) Measuring critical spacing. The stimuli consisted of a target letter flanked by two tumbling Es appearing on both sides of the target along the radial axis
(connecting the target to the fovea). The target letter was randomly drawn from a set of 10 Sloan letters: CDHKNORSVZ. The subject’s task was to identify the
target letter and the subject’s letter-recognition contrast threshold was measured with the staircase procedure described earlier. Critical spacing was mea-
sured at the same locations as Ricco’s area. (D) Estimating critical spacing. Thresholds were obtained for eight different spacings (i.e., the center-to-center
distance between the target letter and flankers). Clipped lines were fitted to the data of log recognition threshold vs. spacing. Critical spacing was defined as
the minimum spacing (degrees) that yields no threshold elevation in the fit (6). (E) Estimating the number of RGCs underlying Ricco’s area (or crowding zone)
and three hypothetical outcomes. To compute the number of RGCs, the following steps were taken. Step 1: Each subject’s critical spacing in a unit of length (E,
i) was converted into a corresponding unit of area (degrees2) for each target location (E, ii). Considering the radial–tangential anisotropy of crowding zone
(7–10, 37), an elliptical shape was used for the area conversion (SI Appendix, Supplemental Methods). Here we illustrate an example of crowding zone
because Ricco’s area is already measured by a unit of area and thus there is no need for this unit conversion. Step 2: The RGC density (E, iii) corresponding to
each target location in the visual field was derived from the equation (26). Step 3: The product of Ricco’s area (degrees2) (or crowding zone) and the RGC
density (degrees−2) was computed for each target location. To be more precise, we calculated the integral of products of ΔRicco’s area or Δcrowding zone and
the corresponding RGC density over the entire integration zone. This yields a plot of the number of RGCs as a function of target location (E, iv). Depending on
the patterns of underlying RGC density (E, iii), three hypothetical outcomes (E, iv) are expected: zero contribution, partial contribution, and full contribution.
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orientation and spatial frequency filter and contrast gain control)
and optimal response pooling, and (v) a decision rule (i.e.,
translating the V1 pooled response into human detection perfor-
mance). Ricco’s area was obtained from the model by employing
the same stimuli (i.e., a circular disk embedded in the uniform
background) and criterion level of detection performance (79.4%
accuracy) as those used for our human observers. Ricco’s area
obtained from the model simulation was then converted into the
number of RGCs using Drasdo et al.’s (26) density data. As shown
in Fig. 3I, the results of the model simulation (black lines) are in
an excellent agreement with our empirical data (green lines)
without any statistically significant difference between the two
estimates (P > 0.5), that is, a total of 14 RGCs underlie Ricco’s
area, independent of target location. We find that the parameter
values (SI Appendix, Table S2) of the model are comparable to the
values reported by Bradley et al. (32). Therefore, both our em-
pirical data and the simulation results of the model provide a
consistent picture of the number of RGCs subserving human
detection performance.

Relating the Variation in the RGC Density to the Variation in
Crowding Zone. Similar to Ricco’s area, critical spacing (i.e., the
extent of spatial integration for object recognition) also increases
with eccentricity (Fig. 4D) [F(3,36) = 919, P < 0.001] and becomes
significantly larger in the upper visual field compared with the
other visual fields (Fig. 4A) [t(16) = 7.39, P < 0.001]. Our be-
havioral results are well-aligned with previous findings demon-
strating the dependence of critical spacing on visual-field
eccentricity (3, 7) and quadrant (8–11).
Eccentricity-dependent crowding zone has been considered a

hallmark of crowding. It is approximated by Bouma’s law (3), which
postulates that target and flankers must be spatially separated by at
least half the eccentricity of the target (i.e., critical spacing =

0.5 eccentricity) in order for the observer to reliably recognize the
target object. A proportionality constant of 0.4 (b = 0.4) was chosen
for the current study because it allowed us to relate our results to
previously published data. Eccentricity-dependent crowding zone
has been explained by cortical constraints such as cortical separa-
tion in V1 (14, 33) or the size of RFs in higher cortical areas (15,
34). On the other hand, the visual-field asymmetry in crowding zone
has been explained by the asymmetries in attentional resolution (11,
35) or space perception (19) between the upper and lower visual
fields. While these accounts have made valuable contributions to
our understanding of the mechanism underlying the perceptual
process of crowding, it is also possible that we might have over-
looked a much simpler explanation that could unify the two phe-
nomena: Perhaps both eccentricity and quadrant-dependent
crowding zones may be in part related to the nonuniform topo-
graphic distribution of the RGCs across the human retina. Our
quantitative analysis allows us to test this very idea.
Fig. 4 shows the number of RGCs underlying crowding zone as

a function of visual-field quadrant (Fig. 4C) and eccentricity
(Fig. 4F), respectively. It is evident that once the RGC density is
taken into account, the number of RGCs underlying crowding
zone becomes less variable across the visual field compared with
zero contribution. Our analysis further shows that the number of
RGCs remains constant [F(3,48) = 0.74, P = 0.53] and the RGC
density accounts for nearly 97% of the variance in crowding zone
across visual-field quadrants (Fig. 4C). On the other hand, the
variation across eccentricities cannot be fully explained by the
variation in the RGC density (P < 0.001). Nevertheless, the RGC
density still explains 81% of the variance in crowding zone across
eccentricities (Fig. 4F). Altogether, nearly 74% of the variance in
crowding zone is explained by the underlying RGC density (Fig.
4J). It is noteworthy that relative to Ricco’s area the contribution
of the RGC density to the variation in crowding zone is much
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lines) is plotted against eccentricity in comparison with our empirical data (green bars and lines). Shaded gray areas indicate 95% CIs of the mean.
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less (90% vs. 74%). Perhaps it is largely because higher cognitive
and/or cortical factors play an increasing role in the perceptual
process of crowding, consistent with previous research (11, 35).
As mRGCs are known to be more responsible for the processing
of object recognition (36), we performed the same analysis using
the density of mRGCs (Fig. 4K). As expected, the contribution of
the mRGC density was noticeably greater than that of the overall
RGC density (74% vs. 78%).
Importantly, we also find that the Bouma’s law of crowding

(Fig. 4G) can be nearly fully explained by the total RGC density
(95% in Fig. 4I) and by the mRGCs (98% in Fig. 4L), re-
spectively. The number of RGCs curve is in line with full con-
tribution despite a noticeable departure at 4° eccentricity. In
other words, Bouma’s law appears to formulate the important
guiding principle of human pattern vision: A fixed number of
RGCs is being employed to encode a target object into a neural
representation, independent of eccentricity.

Simulated Crowding Zones Across the Visual Field Using the RGC
Density. In addition to the eccentricity and quadrant de-
pendency of crowding, the spatial extent of crowding has been
found to be dependent on the position (or configuration) of
flankers with respect to the target. For example, radially

arranged flankers (along the axis connecting the target and the
fixation) induce more crowding than tangentially arranged
ones (orthogonal to the target–fixation axis). This anisotropy
results in radially elongated crowding zone (i.e., the radial–
tangential anisotropy of crowding) (7–9, 17, 37–41). Further-
more, a flanker outside the target (outer flanker) often exerts
stronger crowding than a flanker inside the target (inner
flankers) (i.e., the inner–outer asymmetry of crowding) (3, 9,
38, 39, 42, 43). Due to their robustness, both the radial–tan-
gential anisotropy and the inner–outer asymmetry are con-
sidered significant features of crowding (44, 45).
Here we further examined whether the sampling density of

RGCs is implicated in various defining features of crowding, that
is, its dependence on retinal eccentricity, quadrant, radial vs.
tangential directions, and inner vs. outer directions. To this end,
we simulated critical spacing solely based on the sampling array
of RGCs for radial or tangential direction and inner or outer
direction at different eccentricities and quadrants. More specif-
ically, expected critical spacing at each target location (e.g., inner
direction with respect to the target position at 16° eccentricity in
the upper visual field) was estimated using the fixed number of
RGCs rule in which a fixed number of 72 mRGCs corresponding
to a 6-mm cortical distance (see the following section for this

C
rit

ic
al

 S
pa

ci
ng

 

3°

6°

9°

12°

105
N

um
be

r o
f R

G
C

s

Bouma’s law
ŷ = 0.4E

C
rit

ic
al

 S
pa

ci
ng

 

N
um

be
r o

f R
G

C
s

C
rit

ic
al

 S
pa

ci
ng

 

1°

2°

3°

4°

104

N
um

be
r o

f R
G

C
s

N
um

be
r o

f R
G

C
s

74%

13.5°18.5°4°
8.5°

4

6

8

10

×102(deg-2)×102(deg-2)

R
G

C
 D

en
si

ty
 

R
G

C
 D

en
si

ty
R

G
C

 D
en

si
ty

0°

3°

6°

9°

0°

81%

95%

97%

Target Location (Quadrant) 

Target Location (Eccentricity) 

Zero Contribution

Full Contribution
Actual Results

Critical Spacing

RGC Density Number of RGCs

TARGET LOCATION

8.5°13.5°18.5°4°8.5° 13.5° 18.5°4°8.5° 13.5°18.5°4°

8.5° 13.5°18.5°4°8.5° 13.5°18.5°4°8.5° 13.5°18.5°4°

103

104

103

105

104

103

105

104

103

95% CIs

UvfLvfNvfTvf UvfLvfNvfTvf UvfLvfNvfTvf

UvfLvfNvfTvf

Drasdo et al.
(2007)

×103(deg-2)

0

1

2

3
Drasdo et al.

(2007)

×103(deg-2)

0

1

2

3
Drasdo et al.

(2007)

# of RGCs 
≈14,000

105

104

103

N
um

be
r o

f m
R

G
C

s 78%

Simulated Crowding Zones using the fixed number 
     of RGCs rule 

 Emergence of Radial-Tangential Anisotrophy and 
    Inner-Outer Asymmetry 

98%
105

104

103

8.5° 13.5°18.5°4°

N
um

be
r o

f m
R

G
C

s

# of mRGCs 
≈ 9,800

1 1.5 2 2.5 3

Outer to Inner (O/I) RatioRadial to Tangential (R/T) Ratio

Nandy & Tjan (2012) 
Bex et al. (2003)
Petrov et al. (2007)
Chung (2013)

Petrov & Meleshkevich (2011a)

Greenwood et al. (2017)

Kwon et al. (2014)

Current study
Toet & Levi (1992) Banks et al. (1977)

Bex et al. (2003)

Petrov & Meleshkevich 
(2011b)

Petrov et al. (2007)

Petrov & Meleshkevich 
(2011a)

Current study

RGC Density Number of RGCs
Crowding Zone

∫ (x,y) dxdy∫   Note that  *

*Crowding Zone

Tangential

=

==

# of mRGCs ≈ 4,900

# of RGCs ≈ 6,700

1 1.5 2 2.5 3

1.2 1.5

 ×  ×

In this simulation, 
72 RGCs underlie 

each critical spacing         ,
independent of 

the visual-field location

Inner

4°
8°

16°

Outer

R
ad

ia
l

Pelli et al. (2004)

A

D

G H I L

E F

B C

J M

N

K

Fig. 4. Number of RGCs underlying crowding zone or Bouma’s law of crowding. (A) Critical spacing (degrees) is plotted as a function of visual-field quadrant.
Gray open dots represent individual subjects’ data points. The green solid line indicates the average critical spacing across subjects for a given target location.
Error bars represent ±1 SEM. (B) The RGC density (green solid line) estimated from the equation (26) is plotted against visual-field quadrant. (C) The number
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of target location in comparison with zero contribution and full contribution curves. (K) The number of midget RGCs (mRGCs) underlying crowding zone as a
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critical spacings based on the human RGC mosaic and the fixed number of RGCs rule are plotted in polar coordinates. (N) The mean ratio of radial to
tangential directions (R/T ratio) and the ratio of outer to inner directions (O/I ratio) obtained from our simulated results (black dots) are plotted in comparison
with the ratio values shown in previous human studies. The mean ratio from our simulation represents the average ratio value across 20 different target
locations: 4°, 8°, 12°, 16°, and 20° eccentricities on the meridian of 0°, 90°, 180°, and 270°.
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derivation) is employed, independent of target location. Fig. 4M
shows the results of our simulation in polar coordinates. Fig. 4N
shows a plot of the mean ratio of the radial to tangential con-
ditions (R/T ratio) and the mean ratio of the outer to inner
conditions (O/I ratio) that emerged from our simulation in
comparison with the ratio values shown in previous human
studies (7–10, 37–40, 42, 43). The mean ratio from our simula-
tion represents the average ratio value across 20 different target
locations: 4°, 8°, 12°, 16°, and 20° eccentricities on the meridian
of 0°, 90°, 180°, and 270°.
As expected, the dependency of crowding on eccentricity and

quadrant arises from the simulation, mirroring the empirical data
found in human observers (Fig. 4M). We also find the inner–outer
asymmetry of crowding of which ratio value (on average 1.5 for O/I
ratio) is in a good agreement with published values (1.1∼2.4).
The emergence of the inner–outer asymmetry further confirms
the eccentricity-dependent crowding zone given the fact that
outer direction is always farther away from the fovea compared
with inner direction. However, the radial–tangential anisotropy
of crowding (on average 1.2 for R/T ratio) that emerged from our
simulation is noticeably weaker than published values ranging
from 1.1 to 3.0. We also notice that the magnitude of the an-
isotropy that emerged from the RGC density varies across the
visual field: It is much more pronounced in the upper visual field
and at the far periphery, as shown in Fig. 4M. Despite its vari-
ability, the overall weak anisotropy observed in the simulation
results may also indicate a critical role of higher cortical areas in
the anisotropy of crowding. Indeed, Zhou et al. (46) reported
that while there is a large anisotropy of crowding distance
mapped to the surface of V1, no anisotropy of crowding distance
is shown at the surface of V4, suggesting that the anisotropy
might be largely cortical, changing dramatically from V1 to V4.

Linking the Retina to the Cortex. We started off with the two
premises. First, the topographic distribution of the RGC density
largely underlies the cortical magnification factor (21). Second,
the critical spacing expected from Bouma’s law (b = 0.4) in the

visual field results in a fixed cortical distance (i.e., 6 mm at V1),
independent of eccentricity (14). Now, let’s see how the fixed
number of RGCs rule fits into this picture. Using published ana-
tomical, physiological, and psychophysical data, we performed
some calculations and arrived at these following conclusions:

i) We find that the number of mRGCs underlying a 1-mm
cortical distance is ∼12, independent of eccentricity (Fig.
5A). This is derived by the following equation:

Number  of  mRGCsper  a  1-mm  cortical  distance =
ffiffiffiffiffiffiffiffiffiffi
Dmgc

p �
CMFV1,

[1]

where Dmgc is the mRGC density (in degrees−2), CMFV1 is
the V1 cortical magnification factor (in millimeters per de-
gree). For this estimation, we used a number of CMFV1 data
reported in previous human studies (47–53) (SI Appendix,
Table S3). In Fig. 5A, the estimated number of mRGCs
underlying a 1-mm V1 cortical distance is plotted as a
function of eccentricity ranging from 4° to 20°. Each solid
line represents estimated values from each study. We find
that the number of mRGCs remains fairly constant, in-
dependent of eccentricity, and ∼12 mRGCs underlie a 1-
mm V1 cortical distance, as shown by the black dashed
line in Fig. 5A. This result is consistent with a previous
report that an approximately fixed number of parvocellu-
lar cells in the lateral geniculate nucleus (LGN), which
receives input directly from mRGCs, underlies 1-mm2

cortical area in macaque (54). A similar relationship has
also been found in macaque visual areas V1 and V4: The
size of V4 RFs corresponds to a fixed cortical surface area
in V1 (34).

ii) From i, we derive that the number of mRGCs underlying a
6-mm cortical spacing shown to correspond to the Bouma’s
law (b = 0.4) of eccentricity-dependent critical spacing is
estimated to be about 72 mRGCs (6 mm × 12 mRGCs per
millimeter), independent of eccentricity. This leads to 8,100
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Fig. 5. Linking the retina to the cortex. (A) The number of mRGCs underlying a 1-mm cortical distance is estimated using the human V1 cortical magnification
factor data reported in previous studies. The number of mRGCs estimated from each study (solid lines) is plotted as a function of eccentricity. The dashed
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mRGCs per an ellipsoid-shaped crowding zone, comparable
to our estimation of 9,800 mRGCs (Fig. 4L).

iii) We find that the number of mRGCs corresponding to the
size of a neuron’s classical RF or population RF (pRF) in
V1 is estimated to be about 29, independent of eccentricity
(Fig. 5B). This is derived from the following equation:

Number  of  mRGCsper  the  size  of  V1 RF =RFV1
ffiffiffiffiffiffiffiffiffiffi
Dmgc

p
, [2]

where RFV1 is the RF size in V1 (i.e., diameter in degrees for
classical RF or standard deviation of the Gaussian profile for
pRF) and Dmgc is the mRGC density (in degrees−2). Both the
size of V1 RF in nonhuman primates (55) and the size of
human pRF in V1 (56) are known to increase linearly with
increasing eccentricity, while the increment of the RF size
for a unit eccentricity (i.e., a slope of the function) varies
across studies. For our analysis given in Fig. 5B, we used
a slope of 0.16 ðRFV1 = 0.16  eccentricityÞ shown in both
Gattass et al.’s study (55) on macaques and Kay et al.’s
fMRI study (57) on humans. Note that the use of a different
slope value only shifts the curve vertically without any change
to its shape.

Our empirical data combined with the foregoing derivation
work suggest that the fixed number of RGCs rule might be one
of the organizational principles of the human visual system. We,
thus, implemented a simple retina-V1 pooling model as a po-
tential mechanism that may help us understand the linkage be-
tween the retina to V1. This model consists of three basic layers:
RGC, LGN, and V1 layers, and is based on statistical sampling of
the RGC mosaic and probabilistic connections between layers. A
similar yet more sophisticated model was originally proposed by
Soodak (58) and Ringach (59) to show how the RGC mosaic
accounts for the emergence of orientation columns in striate
cortex of the cat. Our goal here is to demonstrate how the po-
tential property of V1 RFs, the fixed number of RGCs rule,
could arise from a simple pooling model rather than to describe
or propose a biologically realistic model. The details of model
implementation are provided in Methods, but in brief: (i) RGC
layer was represented by a hexagonal lattice of human on- and
off-center mRGC mosaics (26, 32). As shown at the bottom of
Fig. 5C, mRGC RFs were modeled as 2D isotropic Gaussian
functions of which SD was the spacing between cells at a given
location in the mRGC mosaic. (ii) The LGN layer acted as a
relay station between the retina and V1 without substantial
modifications (60–62), where each LGN neuron received input
directly from one RGC. (iii) The probability of connection be-
tween an LGN neuron and a cortical neuron varied as a function
of the distance between their RF centers, which was modeled as
a 2D isotropic Gaussian function of the distance for each cortical
neuron. (iv) The strength of connection (synaptic weights) be-
tween an LGN neuron and a cortical neuron varied as a function
of the distance between their RF centers, which was modeled as
a 2D isotropic Gaussian function of the distance for each cortical
neuron. (v) Each cortical neuron linearly summated its inputs
from the LGN layer and its output represented V1 simple-cell
responses as shown at the top of Fig. 5C. (vi) We ran the sim-
ulation over 1,000 times for each retinal location, 4°, 8°, 12°, 16°,
and 20° eccentricities on the meridian of 0°, 90°, 180°, and 270°,
and counted the number of RGCs connecting to each V1 simple-
cell RF, as summarized in Fig. 5D.
As shown in Fig. 5D, the simulation results show that the size of

V1 RFs increases with increasing eccentricity and on average
10 mRGCs are connected to one V1 simple-cell RF, independent
of eccentricity. This approximates to the number of mRGCs
obtained from our Ricco’s area experiment (∼10 mRGC) shown
in Fig. 3H.

It has been shown that the RF of RGCs is elongated radially
with average major-to-minor axis ratios of 1.2 to 1.3 in cats (63,
64). A similar pattern has also been observed in nonhuman
primates (65, 66), especially for midget ganglion cells (67) with
an average major-to-minor axis ratio of 1.72. In the current
study, we, however, did not incorporate this anisotropy property
or the nonlinearity of V1 simple-cell RFs (68) because they have
inconsequential impacts on the primary goal of our modeling:
estimating the number of RGCs connected to each V1 simple
cell across different eccentricities.

Discussion
In the current study we analyze the relationship between the
topographic distribution of ganglion cell density and the non-
uniform spatial integration across the visual field. By directly
relating the variation in the extent of spatial integration across
the visual field to the variation in the RGC density across the
human retina, we quantify the spatial integration with respect to
the number of RGCs. The data from our empirical work com-
bined with computational modeling and a set of derivations allow
us to arrive at the following conclusions.
First, once the sampling density of RGCs is taken into ac-

count, the variation in the extent of spatial integration across the
visual field becomes less pronounced for both Ricco’s area and
crowding zone. The contribution of the underlying RGC density
to the variation in the spatial integration is found to range from
74 to 98% when other factors are held constant. Second, some of
the known properties of crowding arise when crowding zone is
simulated across the visual field following the fixed number of
RGCs rule. Third, the number of RGCs underlying either a fixed
cortical distance or the size of a V1 RF (classical RF or pRF)
remains constant, independent of retinal eccentricity. Fourth, a
simple retina-V1 pooling model based on statistical sampling of
the human RGC mosaic and probabilistic connections between
layers shows that each V1 simple-cell neuron may receive a fixed
number of mRGCs, independent of eccentricity.
We have shown that the number of RGCs underlying Ricco’s

area remains more or less constant (∼14 RGCs) across the visual
field (Fig. 3G). This result suggests that a fixed number of RGCs
may be recruited by the visual system to achieve complete spatial
summation for luminance detection. Of course, the absolute
value (e.g., ∼14 RGCs) for the number of RGCs underlying
Ricco’s area is subject to change depending on experimental
conditions, such as the luminance of the background or the
wavelength of target stimulus (69, 70). However, what matters
here is that when other factors are held constant the variation in
the RGC density largely accounts for the variation in Ricco’s
area across the visual field. We further validated our findings
using a published retina-V1 detection model (32). Bradley et al.
(32) have shown that human detection performance is well
captured by this detection model based on a small set of the
known optical, retinal, and V1 properties of the human/primate
visual system. Consistent with our empirical findings, the results
of the model also show that ∼14 RGCs are involved in the
process of luminance detection, independent of target location in
the visual space. The impact of the RGC density on the spatial
pooling mechanism has already been suggested in clinical stud-
ies. For example, a significant loss of RGCs, due to pathological
conditions such as glaucoma (71, 72), has been shown to bring
about an enlargement in Ricco’s area (12, 73). Enlarged RFs
have also been observed in the adult rat brain following experi-
mentally induced glaucoma (i.e., loss of RGCs) (74). Our study,
together with the findings from previous studies, supports the
view that Ricco’s area is closely related to the RFs (4) and/or the
density of RGCs (12).
Then, what about the relationship between the RGC density

and the spatial integration involved in complex object recogni-
tion? Although the contribution of the RGC density to the
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variation in crowding zone becomes noticeably less compared
with Ricco’s area (74% vs. 90%), we find that the number of
RGCs underlying crowding zone stays fairly constant [F(3,48) =
0.74, P = 0.53] across different quadrants (Fig. 4C). Interestingly,
we also find that Bouma’s law (b = 0.4) describing eccentricity-
dependent increase in crowding zone can be expressed in units of
underlying RGCs (∼14,000 RGCs or 9,800 mRGCs) (Fig. 4 I and
L). The spatial extent of crowding approximated by Bouma’s law
has been predominantly explained by cortical constraints, that is,
a target and flankers need to be separated by a fixed number of
cortical neurons (a fixed cortical distance) for the visual system
to achieve reliable object recognition (14). By quantifying Bou-
ma’s law with respect to the number of RGCs, we illuminate the
relationship between the topographic distribution of the RGC
density and the spatial integration underpinning human object
recognition. Again, the absolute value for the number of RGCs
underlying crowding zone will differ depending on the coefficient
value of Bouma’s law, whether it is 0.4 (75) or 0.5 (3) of the
eccentricity of the target object. However, it should be noted that
using a different coefficient value only leads to a vertical shift of
the resulting curve (i.e., a plot of the number of RGCs vs. ec-
centricity) without changing the shape of the curve. Therefore,
the coefficient value per se does not make any difference as to
our main point, whether the number of RGCs underlying
eccentricity-dependent increase in critical spacing remains con-
stant across eccentricities or not.
Various accounts (14, 15, 33, 37, 76–81) have been proposed

to explain what might govern the spatial extent of crowding.
However, it is still unresolved whether the integration zone is
predominantly mediated by bottom-up computations, such as
hardwired integration fields (14, 15, 33, 34), and/or top-down
cognitive factors, such as a spotlight of attention (11) or per-
ceptual bias (19). However, the involvement of low- and higher-
level cortical areas has been evidenced by both behavioral and
brain imaging studies (33, 45, 82, 83), including our own (8). For
example, a number of studies (33, 82, 84) demonstrated that
crowding occurs under dichoptic viewing conditions in which a
target and flankers are presented to two different eyes. It has
been also shown that crowding effect can be alleviated if a target
and flankers are dissimilar in color, shape, size, or holistic con-
figuration [e.g., Kooi et al. (85)]. Also, cueing of a target location
(86) or suppression of flankers from visual awareness (87) has
been shown to reduce the crowding effect, suggesting top-down
feedback influences on the perceptual process of crowding (see
reviews in refs. 44, 45, and 88). Consistent with behavioral evi-
dence, crowding effect has also been observed at various stages
of visual processing, from as early as V1 and V2 (8, 14–17) or
V4 and beyond (89–91). Among a great deal of literature on
crowding, one of the unique contributions of our study is to re-
veal a close link between some of the defining features of
crowding and the properties of the human RGC mosaic. This is
indeed consistent with the findings by Greenwood et al. (10)
showing that the common pattern of variations in various visual
tasks such as crowding, saccadic eye movements, and spatial
localization are present across the visual field. Greenwood et al.
(10) attributed the common variations to the shared topology of
spatial vision in the early visual pathway such as the RGCs.
Then, what may explain the linkage between the topographic

distribution of RGC density and the extent of spatial integration?
Although the exact mechanism linking the two remains elusive, we
can speculate that the RF mosaics of RGCs may give rise to some
intrinsic properties of the RFs of visual cortical neurons. For in-
stance, cortical magnification, that is the fundamental organizational
property of the visual cortex, has been largely attributed to the RF
mosaics of RGCs (21), thereby affecting the way visual information
is integrated in the cortex. It has been even argued that the RGC
mosaic defines signals of visual pattern to V1 (58, 59, 92). Regard-
less of the mechanism involved, our derivation work elucidates that

∼29 RGCs correspond to the size of a V1 RF, independent of ec-
centricity and ∼72 RGCs underlies a 6-mm cortical spacing (i.e.,
critical spacing expected from Bouma’s law), independent of ec-
centricity. Our results from the retina-V1 pooling model (Fig. 5C)
further suggest that a fixed number of retinal neurons could be
recruited for a cortical processing unit (e.g., V1 simple cells). These
results collectively lead us to expect that a significant loss of RGCs
due to either normal aging or some pathological conditions such as
glaucoma may impact the extent of spatial integration, which has
been indeed reported in published research (12, 73, 93).
We acknowledge limitations of the current study. Despite recent

advancements in imaging techniques such as AO-OCT (30), direct
counting of RGCs in the living human eye is still challenging. For
this reason, we relied on indirect measurements of the RGC density:
deriving RGC densities from the empirical formula based on aver-
age densities of RGCs of the adult human retina (26). In addition,
most of the results reported in the current study are based on the
overall RGC density of a mix of different ganglion cell types and also
based on psychophysical measurements made in eccentricities be-
tween 4° and 20°. Therefore, it remains to be addressed in a future
study whether the pattern of results will hold true for experimental
conditions beyond what we have tested in the current study, espe-
cially for the macular region of the retina. For instance, Wässle et al.
(22) showed that RGC density can fully account for the cortical
magnification factor and there is no need to postulate a selective
amplification of the foveal representation. Other studies, however,
have shown that the cortical representation of the macula (corre-
sponding to the central 4° of the visual field) is found to be amplified
more than expected from RGC density in both human and non-
human primates (94–96). Nonetheless, given limitations such as the
sizable individual variability across subjects (27) and functional
variability across cell types (e.g., midget, parasol, or bistratified cells)
(97) (see ref. 98 for review), the close match between the estimated
RGC density and the psychophysical results is rather remarkable.
Importantly, we also replicated our findings using Watson’s density
equation (29), which helps us believe that the pattern of our results
is not likely due to a particular formula employed in the current
study (see details in SI Appendix, Figs. S1 and S2).
In summary, our results show a quantitative agreement between

the topographic distribution of the RGC density and the non-
uniform spatial integration across the visual field: The variation in
the sampling density of RGCs across the human retina is closely
matched to the variation in the extent of spatial integration re-
quired for either luminance detection or object recognition. Our
findings suggest that a fixed number of RGCs subserves spatial
integration of visual input, independent of the visual-field location.

Methods
Participants. A total of 21 young, normally sighted individuals (age range 19 to
34 y, mean 22.62 ± 3.81 y, six males) took part in this study. The sample size for
each experimental condition is summarized in SI Appendix, Table S1. The study
participants were recruited from the University of Alabama at Birmingham
campus. All participants were native English speakers without known cognitive
or neurological impairments. The mean visual acuity (ETDRS charts) was−0.09 ±
0.09 logMAR (or 20/16 Snellen equivalent) and the mean log contrast sensitivity
(Pelli–Robson charts) was 1.82 ± 0.15 for the tested eye. The experimental
protocols followed the tenets of the Declaration of Helsinki and were approved
by the Internal Review Board of the University of Alabama at Birmingham.
Written informed consents were obtained from all subjects before the exper-
iment and after explanation of the nature and possible consequences of the
study. Only dominant eye (determined by the Miles test) was tested while the
other eye was covered with an eye patch. Proper refractive correction for
the viewing distance was used for each participant.

Stimuli and Task Procedures. The details of stimuli and task procedures are
provided in SI Appendix, Supplemental Methods.

Data Analyses. The details of data analyses are provided in SI Appendix,
Supplemental Methods.
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Model Overview and Implementation. We implemented a simple retina-
V1 pooling model as a potential mechanism linking the retina to V1. A simi-
lar yet more sophisticated model was originally proposed by Ringach (59), Paik
and Ringach (92), and Soodak (58) to show how the properties of the RGC
mosaic accounts for the emergence of orientation columns in striate cortex of
cats and rodents. The goal of modeling in our study is to demonstrate how the
RFs of V1 simple cells increase with retinal eccentricity while maintaining their
connection with a fixed number of RGCs. As shown in Fig. 5C, the model in-
cludes three major processing stages: the RGC, LGN, and V1 layers. We adopted
the known properties of the mRGC mosaic and the connection between the
RGC and LGN layers based on human or nonhuman primate studies. We,
however, used the same probabilistic connection and synaptic strength values
between a geniculate RF and a cortical neuron as those from Ringach’s study
(59) because no human data are currently available on these components. First,
the RGC layer was represented by a hexagonal lattice of humanmRGC mosaics.
Two RGC mosaics representing the center points of on- and off-center mRGC
cells were generated from Bradley et al.’s model (32) based on Drasdo’s human
RGC data (26). Both on-center ðonRFRGC,Þ or off-center ðoffRFRGCÞ mRGC RFs
were modeled as 2D isotropic Gaussian functions of which SD was the spacing
between cells in the mRGC mosaic:

σRGC = spacingi,j , [3]

where σRGC is the SD of the RF of a mRGC and spacingi,j is the spacing be-
tween mRGCs for a target retinal location (i, j) derived from the spacing
function provided in Bradley’ study (32). Second, the LGN layer acted as a
relay station between the retina and V1 without substantial modifications
(60–62), where each LGN neuron received input directly from one RGC. Thus,
the total number of cells at the LGN layer was equal to the sum of on- and
off- center mRGCs. The RF mosaic of LGN neurons remained the same as the
RGC layer as shown in Fig. 5C. Third, the probability of connection between
an LGN neuron and a cortical neuron varied as a function of the distance
between their RF centers, which was modeled as a 2D isotropic Gaussian
function of the distance for each cortical neuron:

P = ce
− k�x−�yk2
2σconn2

, [4]

where P is the probability of connection between a geniculate RF centered
at �x (i.e., the RF center of a geniculate neuron) and a cortical cell centered at
�y (i.e., the RF center of a cortical neuron), σconn is the SD of the Gaussian

function ðσconn = 0.97σRGCÞ, and c is the maximum probability value (c = 0.85).
An LGN neuron was considered being connected to a cortical neuron if it
had P > 0.4 (i.e., a threshold connection value). [Note that the absolute
number of connected LGN neurons depends on the threshold connection
value. However, using a different threshold value only results in a vertical
shift of the resulting curve (Fig. 5 D, ii) without any change to its shape.]
Fourth, once an LGN neuron made its connection to a cortical neuron, the
strength of connection (synaptic strength) was modeled as a Gaussian
function of the distance between their RF centers:

S=e
−k�x−�yk

2

2σsyn2 , [5]

where S is the synaptic strength between a geniculate RF centered at �x and a
cortical cell centered at �y when the two are connected. σsyn is the SD of the
Gaussian function for synaptic strength ðσsyn = 1.1σRGCÞ. Fifth, each cortical
neuron linearly summated its inputs from the LGN layer and its output
represented V1 simple-cell responses ðRFv1Þ:

RFv1 =
X 

onWkonRFLGN,k −
X 

offWkoffRFLGN,k , [6]

where onRFLGN,k and offRFLGN,k are on-center and off-center LGN RFs and the
same as onRFRGC,k and offRFRGC,k, respectively. k is the index of LGN neurons

connecting to one V1 cortical neuron. onWk

�
=  SkP

S

�
and offWk

�
=  SkP

S

�
are

the weights for the kth on- and off-center LGN neuron, respectively. We ran
the simulation for 20 different retinal locations: 4°, 8°, 12°, 16°, and 20°
eccentricities on the meridian of 0°, 90°, 180°, and 270°. For each location,
we ran the simulation over 1,000 times and each time we randomly varied
the center position of a cortical neuron within a circular region of radius r =
0.4° centered at the target retinal location. We then obtained the number
of mRGCs connecting to one cortical neuron for each eccentricity by aver-
aging over 1,000 simulation results and over the four meridian locations
(Fig. 5 D, ii).
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